ZFS and multi-tiered storage

Boris Protopopov
Nexenta Systems Inc.
at OpenZFS Developers Summit
11.2013

U'nexenta



@
S ZFS and multi-tiered storage
* Why multiple storage tiers

Multi-tiered zpool
« Data path and storage management
» Challenges and opportunities

First steps
Future work
Discussion

2 pnexenta



Why multiple storage tiers

Meet the needs of varying/mixed workloads

Allow for efficient use of fast ando

Achieve performance of fast anc
storage at a fraction of the cost

small storage
expensive

Leverage unique aspects of different storage
technologies, device types, vendors/products

Offer uncomplicated policy-based storage

management workflows

U'nexenta



()
S Multi-tiered zpool: data path
» Differentiated placement of the payload
— Data vs. metadata, metadata types
— Dataset based payload differentiation
* Transient and permanent placement

 |nteraction between application workloads and
packground management tasks, e.qg. cross-tier
payload movement

* Interaction between tiers based on similar
storage technologies

4 U'nexenta



Multi-tiered zpool: storage management

Existing tiers: “normal” tier, logs, and cache
Tier naming: reserved vs. user-defined names

Payload p

ler-
ler-

ler-

DaSec
DaSel

acement and migration policies
redundancy and replication
scrubbing and repair

DaSel

Spare management

U'nexenta



% Multi-tiered zpool: challenges
* General case of payload migration
— Mutable payload
— Deduplication
— Immutable payload
e Opportunities
— Use cases without migration of immutable payload
— Payload mobility (block pointer rewrite)

. pnexenta



Multi-tiered zpool: first steps

SSD-based dedicated metadata storage tier

Differentiated placement of various metadata
types in “normal” or “special” tiers

— Pool level metadata

— Dataset level metadata

Managing interaction with cache tier (L2ARC)
— “special-only”, dual, cache-only placement

Tier-aware spare management

U'nexenta



Multi-tiered zpool: first steps

Generalized SSD-based tier
— Use managed per dataset

Can be used as log, meta device, or write cache

The latter implies transient payload placement
and subsequent migration

Use cases without immutable payload are
considered initially

U'nexenta



()
S Multi-tiered zpool: future work
* De-duplicated payload

— Transient DDT class

« General case of cross-tier payload migration
— Block pointer rewrite to move immutable payload

9 pnexenta



Discussion

U nexenta

class storage for everyone



' nexenta

Enterprise class storage for everyone

11 &' nexenta

orage for everyon



