
OpenZFS:
a Community of Open Source ZFS Developers

Matthew Ahrens
Delphix

San Francisco, CA
mahrens@delphix.com

Abstract—OpenZFS is a collaboration among open
source ZFS developers on the FreeBSD, illumos, Linux,
and Mac OSX platforms. OpenZFS helps these developers
work together to create a consistent, reliable, performant
implementation of ZFS. Several new features and perfor-
mance enhancements have been developed for OpenZFS
and are available in all open-source ZFS distributions.

I. INTRODUCTION

In the past decade, ZFS has grown from a project
managed by a single organization to a distributed,
collaborative effort among many communities and
companies. This paper will explain the motivation
behind creating the OpenZFS project, the problems
we aim to address with it, and the projects under-
taken to accomplish these goals.

II. HISTORY OF ZFS DEVELOPMENT

A. Early Days
In the early 2000’s, the state of the art in filesys-

tems was not pretty. There was no defense from
silent data corruption introduced by bit rot, disk
and controller firmware bugs, flaky cables, etc. It
was akin to running a server without ECC memory.
Storage was difficult to manage, requiring different
tools to manage files, blocks, labels, NFS, mount-
points, SMB shares, etc. It wasn’t portable between
different operating systems (e.g. Linux vs Solaris)
or processor architectures (e.g. x86 vs SPARC vs
ARM). Storage systems were slow and unscalable.
They limited the number of files per filesystem,
the size of volumes, etc. When available at all,
snapshots were limited in number and performance.
Backups were slow, and remote-replication soft-
ware was extremely specialized and difficult to use.
Filesystem performance was hampered by coarse-
grained locking, fixed block sizes, naive prefetch,

and ever-increasing fsck times. These scalability
issues were mitigated only by increasingly complex
administrative procedures.

There were incremental and isolated improve-
ments to these problems in various systems. Copy-
on-write filesystems (e.g. NetApp’s WAFL) elimi-
nated the need for fsck. High-end storage systems
(e.g. EMC) used special disks with 520-byte sectors
to store checksums of data. Extent-based filesystems
(e.g. NTFS, XFS) worked better than fixed-block-
size systems when used for non-homogenous work-
loads. But there was no serious attempt to tackle all
of the above issues in a general-purpose filesystem.

In 2001, Matt Ahrens and Jeff Bonwick started
the ZFS project at Sun Microsystems with one
main goal: to end the suffering of system admin-
istrators who were struggling to manage complex
and fallible storage systems. To do so, we needed
to re-evaluate obsolete assumptions and design an
integrated storage system from scratch. Over the
next 4 years, they and a team of a dozen engineers
implemented the fundamentals of ZFS, including
pooled storage, copy-on-write, RAID-Z, snapshots,
and send/receive. A simple administrative model
based on hierarchical property inheritance made
it easy for system administrators to express their
intent, and made high-end storage features like
checksums, snapshots, RAID, and transparent com-
pression accessible to non-experts.

B. Open Source

As part of the OpenSolaris project, in 2005 Sun
released the ZFS source code as open source soft-
ware, under the CDDL license. This enabled the
ports of ZFS to FreeBSD, Linux, and Mac OSX,
and helped create a thriving community of ZFS



users. Sun continued to enhance ZFS, bringing it to
enterprise quality and making it part of the Solaris
operating system and the foundation of the Sun
Storage 7000 series (later renamed the Oracle ZFS
Storage Appliance). The other platforms continually
pulled changes from OpenSolaris, benefiting from
Sun’s continuing investment in ZFS. Other compa-
nies started creating storage products based Open-
Solaris and FreeBSD, making open-source ZFS an
integral part of their products.

However, the vast majority of ZFS development
happened behind closed doors at Sun. At this time,
very few core enhancements were made to ZFS
by non-Sun contributors. Thus although ZFS was
Open Source and multi-platform, it did not have an
open development model. As long as Sun contin-
ued maintaining and enhancing ZFS, this was not
necessarily an impediment to the continued success
of products and community projects based on open-
source ZFS – they could keep getting enhancements
and bug fixes from Sun.

C. Turmoil

In 2010, Oracle acquired Sun Microsystems,
stopped contributing source code changes to ZFS,
and began dismantling the OpenSolaris community.
This raised big concerns about the future of open-
source ZFS – without its primary contributor, would
it stagnate? Would companies creating products
based on ZFS flounder without Sun’s engineering
resources behind them? To address this issue for
both ZFS and OpenSolaris as a whole, the Illumos
project was created. Illumos took the source code
from OpenSolaris (including ZFS) and formed a
new community around it. Where OpenSolaris de-
velopment was controlled by one company, illumos
creates common ground for many companies to con-
tribute on equal footing. ZFS found a new home in
Illumos, with several companies basing their prod-
ucts on it and contributing code changes. FreeBSD
and Linux treated Illumos as their upstream for
ZFS code. However, there was otherwise not much
interaction between platform-specific communities.
There continued to be duplicated efforts between
platforms, and surprises when code changes made
on one platform were not easily ported to others.
As the pace of ZFS development on FreeBSD and

Linux increased, fragmentation between the plat-
forms became a real risk.

III. THE OPENZFS COLLABORATION

A. Goals
The OpenZFS project was created to accomplish

three goals:
1) Open communication: We want everyone

working on ZFS to work together, regardless of
what platform they are working on. By working to-
gether, we can reduce duplicated effort and identify
common goals.

2) Consistent experience: We want users’ expe-
rience with OpenZFS to be high-quality regardless
of what platform they are using. Features should be
available on all platforms, and all implementations
of ZFS should have good performance and be free
of bugs.

3) Public awareness: We want to make sure
that people know that open-source ZFS is available
on many platforms (e.g. illumos, FreeBSD, Linux,
OSX), that it is widely used in some of the most
demanding production environments, and that it
continues to be enhanced.

B. Activities
We have undertaken several activities to accom-

plish these goals:
1) Website: The http://open-zfs.org website

(don’t forget the dash!) publicizes OpenZFS
activities such as events, talks, and publications.
It acts as the authoritative reference for technical
work, documenting both usage and how ZFS
is implemented (e.g. the on-disk format). The
website is also used as a brainstorming and
coordination area for work in progress. To facilitate
collaboration, the website is a Wiki which can be
edited by any registered user.

2) Mailing list: The OpenZFS developer mail-
ing list[1] serves as common ground for develop-
ers working on all platforms to discuss work in
progress, review code changes, and share knowledge
of how ZFS is implemented. Before its existence,
changes made on one platform often came as a
surprise to developers on other platforms, and some-
times introduced platform compatibility issues or
required new functions to be implemented in the
Solaris Porting Layer. The OpenZFS mailing list

http://open-zfs.org
http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/Mailing_list


allows these concerns to be raised and addressed
during code review, when they can easily be ad-
dressed. Note that this mailing list is not a re-
placement for platform-specific mailing lists, which
continue to serve their role primarily for end users
and system administrators to discuss how to use
ZFS, as well for developers to discuss platform-
specific code changes.

3) Office hours: Experts in the OpenZFS com-
munity hold online office hours[2] approximately
once a month. These question and answer sessions
are hosted by a rotating cast of OpenZFS develop-
ers, using live audio/video/text conferencing tools.
The recorded video is also available online.

4) Conferences: Since September 2013, 6 Open-
ZFS developers have presented at 8 conferences.
These events serve both to increase awareness of
OpenZFS, and also to network with other devel-
opers, coordinating work in person. Additionally,
we held the first OpenZFS Developer Summit[3]
in November 2013 in San Francisco. More than 30
individuals participated, representing 14 companies
and all the major platforms. The two-day event
consisted of a dozen presentations and a hackathon.
Ten projects were started at the hackathon, including
the “best in show”: a team of 5 who ported the
TestRunner test suite from illumos to Linux and
FreeBSD. Slides from the talks and video recordings
are available on the open-zfs.org website[3].

C. New features

In this section we will share some recent improve-
ments to the OpenZFS code. These changes are
available on all OpenZFS platforms (e.g. Illumos,
FreeBSD, Linux, OSX, OSv).

1) Feature flags: The ZFS on-disk format was
originally versioned with a linear version number,
which was incremented whenever the on-disk for-
mat was changed. A ZFS release that supported a
given version also must understand all prior ver-
sions.

This model was designed initially for the single-
vendor model, and was copacetic with the OpenSo-
laris goals of community development while main-
taining control over the essentials of the prod-
uct. However, in the open development model of
OpenZFS, we want different entities to be able to
make on-disk format changes independently, and

then later merge their changes together into one
codebase that understands both features. In the
version-number model, two companies or projects
each working on their own new on-disk features
would both use version N+1 to denote their new
feature, but that number would mean different things
to each company’s software. This would make it
very difficult for both companies to contribute their
new features into a common codebase. The world
would forever be divided into ZFS releases that
interpreted version N+1 as company A intended,
and those that interpreted it as company B intended.

To address this problem, we designed and im-
plemented “feature flags” to replace the linear ver-
sion number. Rather than having a simple ver-
sion number, each storage pool has a list of
features that it is using. Features are identified
with strings, using a reverse-DNS naming conven-
tion (e.g. com.delphix:background destroy). This
enables on-disk format changes to be developed in-
dependently, and later be integrated into a common
codebase.

With the old version numbers, once a pool was
upgraded to a particular version, it couldn’t be
accessed by software that didn’t understand that
version number. This accomplishes the goal of on-
disk versioning, but it is overly restrictive. With
OpenZFS feature flags, if a feature is enabled but
not actually used, the on-disk information reflects
this, so software that doesn’t understand the feature
can still access the pool. Also, many features change
the on-disk format in a way that older software
can still safely read a storage pool using the new
feature (e.g. because no existing data structures
have been changed, only new structures added).
OpenZFS feature flags also supports this use case.

2) LZ4 compression: ZFS supports transparent
compression, using the LZJB and GZIP algorithms.
Each block (e.g. 128KB) is compressed indepen-
dently, and can be stored as any multiple of the
disk’s sector size (e.g. 68.5KB). LZJB is fairly
fast and provides a decent compression ratio, while
GZIP is slow but provides a very good compression
ratio. In OpenZFS, we have also implemented the
LZ4 compression algorithm, which is faster than
LZJB (especially at decompression) and provides
a somewhat better compression ratio (see Figure
1). For many workloads, using LZ4 compression

http://www.open-zfs.org/wiki/OpenZFS_Office_Hours
http://www.open-zfs.org/wiki/OpenZFS_Developer_Summit_2013
http://open-zfs.org


Fig. 1. Compression speeds and ratios compared (single core)

is actually faster than not compressing, because it
reduces the amount of data that must be read and
written.

3) Smooth write throttle: If the disks can’t keep
up with the application’s write rate, then the filesys-
tem must intervene by causing the application to
block, delaying it so that it can’t queue up an
unbounded amount of dirty data.

ZFS batches several seconds worth of changes
into a transaction group, or TXG. The dirty data
that is part of each TXG is periodically synced
to disk. Before OpenZFS, the throttle was imple-
mented rather crudely: once the limit on dirty data
was reached, all write system calls (and equivalent
NFS, CIFS, and iSCSI commands) blocked until
the currently syncing TXG completed. The effect
is that ZFS performed writes with near-zero latency,
until it got “stuck” and all writes blocked for several
seconds.[4]

We rewrote the write throttle in OpenZFS to
provide much smoother, more consistent latency, by
delaying each write operation a little bit. The trick
was to find a good way of computing how large the
delay should be. The key was to measure the amount
of dirty data in the system, incrementing it as write
operations came in and decrementing it as write i/o
to the storage completes. The delay is a function
of the amount of dirty data (as a percentage of the
overall dirty data limit). As more write operations
come in, the amount of dirty data increases, thus
increasing the delay. For a given workload, this
algorithm will seek a stable amount of dirty data
and thus a stable delay. Crucial for easy understand-
ing of the system, this works without taking into
account historical behavior or trying to predict the

Fig. 2. Histogram of write latencies (log/log graph)

future. This makes the algorithm very responsive
to changing workloads; it can’t get “stuck” doing
the wrong thing because of a temporary workload
anomaly.

As a result of this work, we were able to reduce
the latency outliers for a random write workload by
300x, from 10 seconds to 30 milliseconds (meaning
that 99.9% of all operations completed in less than
30 milliseconds). (See Figure 2.)

IV. FURTHER WORK

Here we will outline some of the projects that are
in progress.

A. Platform-independent code repository

Currently, code is shared between platforms on
an ad-hoc basis. Generally, Linux and FreeBSD
pull changes from illumos. This process is not as
smooth as it could be. Linux and FreeBSD must
maintain fairly tricky porting layers to translate the
interfaces that the ZFS code uses on illumos to
equivalent interfaces on Linux and FreeBSD. It is
rare that changes developed on other platforms are
integrated into illumos, in part because of the techni-
cal challenges that newcomers to this platform face
in setting up a development environment, porting,
building, etc.

We plan to create a platform-independent code
repository of OpenZFS source code that will make
it much easier to get changes developed on one
platform onto every OpenZFS platform. The goal is
that all platforms will be able to pull the exact code
in the OpenZFS repo into their codebase, without
having to apply any diffs.



We will define the interfaces that code in the
OpenZFS repo will use, by explicitly wrapping all
external interfaces. For example, instead of calling
cv broadcast(kcondvar t *), OpenZFS code would
call zk cv broadcast(zk condvar t *). Each plat-
form would provide wrappers which translate from
the OpenZFS zk interfaces to platform-specific
routines and data structures. This will allow the
“Solaris Porting Layers” to be simplified.

The OpenZFS repo will only include code that is
truly platform-independent, and which can be tested
on any platform in userland (using the existing
libzpool.so mechanism). Therefore it will include
the DMU, DSL, ZIL, ZAP, most of the SPA, and
userland components (/sbin/zfs, libzfs, etc). It will
not include the ZPL, ZVOL, or vdev disk.c, as these
have extensive customizations for each platform. A
longer-term goal is to split the ZPL into platform-
independent and platform-dependent parts, and in-
clude the platform-independent part in the OpenZFS
repo.

For more information, see the slides and video
from the talk at the 2013 OpenZFS Developer
Summit[3].

B. Conferences

Continuing the very successful 2012 ZFS Day
and 2013 OpenZFS Developer Summit conferences,
we plan to hold more OpenZFS-centered events.
This will include annual OpenZFS Developer Sum-
mits, as well as more casual local meet-ups. We
will also continue evangelizing OpenZFS at general
technology conferences.

C. Resumable send and receive

ZFS send and receive is used to serialize and
transmit filesystems between pools. It can quickly
generate incremental changes between snapshots,
making it an ideal basis for remote replication
features. However, if the connection between send
and receive processes is broken (e.g. by a network
outage or one of the machines rebooting), then
the send must re-start from the beginning, losing
whatever data was already sent.

We are working on an enhancement to this that
will allow a failed send to resume where it left off.
This involves having the receiving system remember
what data has been received. This is fairly simple,

because data is sent in (object, offset) order. There-
fore the receiving system need only remember the
highest (object, offset) that has been received. This
information will then be used to restart the send
stream from that point.

The one tricky part is that we need to enhance
the checksum that is stored in the send stream.
Currently the checksum is only sent at the end of
the entire send stream, so if the connection is lost,
the data that was already received has not been
verified by any checksum. We will enhance the send
stream format to transmit the checksum after each
record, so that we can verify each record as it is
received. This will also provide better protection
against transmission errors in the metadata of the
send stream.

D. Large block support

ZFS currently supports up to 128KB blocks. This
is large compared to traditional filesystems, which
typically use 4KB or 8KB blocks, but we still see
some circumstances where even larger blocks would
increase performance. Therefore, we are planning
to add support for blocks up to at least 1MB in
OpenZFS.

We expect to see an especially large perfor-
mance benefit when using RAID-Z, especially
with very wide stripes (i.e. many devices in the
RAID-Z group). RAID-Z breaks each block apart
and spreads it out across all devices in the RAID-Z
group. Therefore, under a random read workload,
RAID-Z can deliver the IOPS of only a single
device, regardless of the number of devices in the
RAID-Z group. By increasing the block size, we
increase the size of each IO, which increases the
effective bandwidth of the random read workload.

This is especially important when scrubbing or
resilvering, which in the worst case creates a ran-
dom read workload. By increasing the block size,
we raise the lower bound of the scrub or resilver
time. For example, consider a RAID-Z group with
eight 1-TB disks that can do 100 random reads per
second. With 128KB block size, in the worst case
we could resilver one drive in 186 hours (1TB *
8 drives / 128KB block size / 100 IOPS). Whereas
with 8MB block size, in the worst case we could
resilver a drive in 2.8 hours. This corresponds to
a rate of 104MB/second, which is close to the



typical maximum sequential transfer rate of hard
drives, thus matching the performance of LBA-
based resilver mechanisms.

V. PARTICIPATION

OpenZFS exists because of contributions of every
type. There are a number of ways you can get
involved:

If you are working with ZFS source code, join the
developer mailing list[1]. Post there to get design
help and feedback on code changes.

If your company is making a product with Open-
ZFS, tell people about it. Contact admin@open-
zfs.org to put your logo on the OpenZFS website.
Consider sponsoring OpenZFS events, like the De-
veloper Summit. If you have enhanced OpenZFS,
work with the community to contribute your code
changes upstream. Beside benefiting everyone using
OpenZFS, this will make it much easier for you
to sync up with the latest OpenZFS enhancements
from other contributors, with a minimum of merge
conflicts.

If you are using OpenZFS, help spread the word
by writing about your experience on your blog or
social media sites. Ask questions at the OpenZFS

Office Hours events. And of course, keep sharing
your suggestions for how OpenZFS can be even
better (including bug reports).

VI. CONCLUSION

ZFS has survived many transitions, and now with
OpenZFS we have the most diverse, and yet also
the most unified, community of ZFS contributors.
OpenZFS is available on many platforms: illumos,
FreeBSD, Linux, OSX, and OSv. OpenZFS is an
integral part of dozens of companies’ products.[5] A
diverse group of contributors continues to enhance
OpenZFS, making it an excellent storage platform
for a wide range of uses.

REFERENCES

[1] Mailing list: developer@open-zfs.org, see http://www.open-zfs.
org/wiki/Mailing list to join.

[2] Office Hours, see http://www.open-zfs.org/wiki/OpenZFS
Office Hours

[3] Developer Summit, see http://www.open-zfs.org/wiki/OpenZFS
Developer Summit 2013

[4] Old ZFS write throttle, see http://blog.delphix.com/ahl/2013/
zfs-fundamentals-write-throttle/

[5] Companies using OpenZFS, see http://www.open-zfs.org/wiki/
Companies

http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/Mailing_list
http://www.open-zfs.org/wiki/OpenZFS_Office_Hours
http://www.open-zfs.org/wiki/OpenZFS_Office_Hours
http://www.open-zfs.org/wiki/OpenZFS_Developer_Summit_2013
http://www.open-zfs.org/wiki/OpenZFS_Developer_Summit_2013
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle/
http://blog.delphix.com/ahl/2013/zfs-fundamentals-write-throttle/
http://www.open-zfs.org/wiki/Companies
http://www.open-zfs.org/wiki/Companies

	Introduction
	History of ZFS Development
	Early Days
	Open Source
	Turmoil

	The OpenZFS Collaboration
	Goals
	Open communication
	Consistent experience
	Public awareness

	Activities
	Website
	Mailing list
	Office hours
	Conferences

	New features
	Feature flags
	LZ4 compression
	Smooth write throttle


	Further Work
	Platform-independent code repository
	Conferences
	Resumable send and receive
	Large block support

	Participation
	Conclusion
	References

