
Shared Log Pool

Introduction

● Paul Dagnelie (he/him)
● Delphix
● 10th Dev Summit!
● Past Talks

○ Redacted Send/Receive

○ Metaslab Performance

Background: The ZIL

● Transaction Groups (TXGs)
○ Efficient, but infrequent

● Synchronous writes
○ Low latency

○ High frequency in some workloads

● Anti-synergy

Background: The ZIL

● Transaction Groups (TXGs)
○ Efficient, but infrequent

● Synchronous writes
○ Low latency

○ High frequency in some workloads

● Solution: ZFS Intent Log (ZIL)
○ Per-dataset

○ Chain of blocks

○ Not long-term storage

○ Only read on recovery

Dataset

ZIL Block ZIL Block ZIL Block

ZIL BlockZIL BlockZIL BlockZIL Block

Background: ZIL Alloc/Write

● Sync write comes in
● Allocate block
● Can’t wait for allocation to sync
● Solution: Chain blocks together

Dataset

ZIL Block ZIL Block ZIL Block

ZIL BlockZIL BlockZIL Block

Background: ZIL Alloc/Write

● Sync write comes in
● Allocate block
● Can’t wait for allocation to sync
● Solution: Chain blocks together

● When TXG syncs, advance head
○ Data is in order, no losses

Dataset

ZIL Block ZIL Block ZIL Block

ZIL BlockZIL BlockZIL Block

Dataset

Background: ZIL Claim/Replay

● System crash/power event
● Need to find all ZIL blocks before we start allocating
● ZIL Claim:

○ For each dataset:

■ Iterate over ZIL chain:

● Mark each block as allocated

● ZIL Replay:
○ On mount, iterate over ZIL chain:

■ Apply each record in each block

Background: SLOGs

● Where do ZIL writes go?
● Embedded SLOG

○ Easy Administration

○ Complex performance

● SLOG devices
○ Harder administration

○ Better Performance

○ Expensive

zpool

vdev vdev vdevSLOG

SAN

Context: Multiple Pools

● Moving data
○ FibreChannel/SAN

○ Shift pools from server to server

○ Load balancing

vdev vdev vdev vdev vdev vdev vdev

Server

zpool

SLOG

zpool

SLOG

vdev vdev vdev vdev vdev vdev vdev

SAN

Context: Multiple Pools

● Moving data
○ FibreChannel/SAN

○ Shift pools from server to server

○ Load balancing

vdev vdev vdev vdev vdev vdev vdev

Server

zpool

SLOG

Server

zpool

SLOG

vdev vdev vdev vdev vdev vdev vdev

Context: Multiple Pools

● Fault isolation
○ Caching data

○ Don’t want to lose other data if one disk dies

○ Some software already handles this

zpool

vdev

zpool

vdev

zpool

vdev

zpool

vdev

zpool

vdev

Context: Multiple Pools

● Moving data
○ FibreChannel/SAN

○ Poor networking

● Fault isolation
● Varying redundancy/performance

requirements

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevvdev vdev vdevvdev

zpool

vdevSLOG

SLOG

The Problem

● Per-pool SLOG devices
● Capacity planning?
● Load balancing?
● Adding or removing pools?

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevvdev vdev vdevvdev

zpool

vdevSLOG

SLOG

The Problem

● Per-pool SLOG devices
● Capacity planning?
● Load balancing?
● Adding or removing pools?

● Insight: This is what zpools were built
to solve!

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevSLOG

zpool

vdevSLOG

zpool

vdevSLOG

zpool

vdev vdev vdevvdev vdev vdevvdev

zpool

vdevSLOG

SLOG

The Solution

● Pool SLOG devices
● Multiple clients, one provider
● Performance near-parity
● Simple administration

zpool

vdev vdev vdev

zpool

vdev vdev vdev

shared log
pool

vdev vdev vdev

zpool

vdev

zpool

vdev

zpool

vdev

zpool

vdev

zpool

vdev vdev vdevvdev vdev vdevvdev

Shared Log Pool

● Normal zpool except:
○ No filesystems

○ Config flag

○ New data structure: the Chain Map

■ Details later!

$ zpool create -L shared_log sdb sdc sdd
$ zpool list -v -o name,size
NAME SIZE
shared_log 240G
 sdb 80G
 sdc 80G
 sdd 80G
rpool 69.5G
 sda1 70.0G

Client Pool

● Normal zpool except:
○ No physical SLOG

○ Depends on shared log pool

○ ZIL blocks stored in shared log pool

● Create or import

$ zpool create -l shared_log client sde sdf sdg
$ zpool list -v -o name,size client
NAME SIZE
client 6T
 sdb 2T
 sdc 2T
 sdd 2T
 shared log -
 shared_log 240G

Client Pool

● Normal zpool except:
○ No physical SLOG

○ Depends on shared log pool

○ ZIL blocks stored in shared log pool

● Create or import

$ zpool import -m -l shared_log client
$ zpool list -v -o name,size client
NAME SIZE
client 6T
 sdb 2T
 sdc 2T
 sdd 2T
 shared log -
 shared_log 240G

Shared log pool

Client pool

But Wait!

● ZIL header points to shared log pool
● Cross pool blkptrs?
● ZIL Claim
● Need a better way Dataset

ZIL Block ZIL Block ZIL Block

ZIL BlockZIL BlockZIL Block

The Chain Map

● Map from objset to ZIL chain
○ In-memory representation

○ On-disk format

Client

Client

Client

Client

Client
FS

FS

FS

FS

FS

FS

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL Use: New ZIL

● New filesystem created in client

Shared log pool

Client pool

Dataset

Chain
map

ZIL Use: New ZIL

● New filesystem created in client
● Create chain map entry
● Allocate first block

Shared log pool

Client pool

Dataset

ZIL Block
Chain
map

ZIL Use: New ZIL Block

● Sync write comes in
● Allocate in shared log pool

Shared log pool

Client pool

Dataset

ZIL Block

ZIL BlockZIL Block

Chain
map

ZIL Use: New ZIL Block

● Sync write comes in
● Allocate in shared log pool
● Append to chain

○ No new logic

Shared log pool

Client pool

Dataset

ZIL Block

ZIL BlockZIL Block

Chain
map

ZIL Block

ZIL Use: TXG sync

● Client pool syncing TXG
● Need to move chain head forwards

Shared log pool

Client pool

Dataset

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

ZIL Use: TXG sync

● Client pool syncing TXG
● Need to move chain head forwards
● After TXG syncs, update chain map

○ spa_zil_map

● Free old ZIL Blocks

Shared log pool

Client pool

Dataset

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

ZIL Use: Removing ZIL

● Deleting filesystem
● Need to clean up chain

Shared log pool

Client pool

Dataset

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

ZIL Use: Removing ZIL

● Deleting filesystem
● Need to clean up chain
● After deletion syncs in client, update

chain map
○ spa_zil_deletes

● Free all blocks in chain
Shared log pool

Client pool

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

ZIL Claim

● Crash/power outage
● On shared log pool import

○ Iterate over each client in chain map

■ Iterate over each filesystem

● Mark each ZIL block as allocated

Shared log pool
ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

ZIL Replay

● Once client pool imports
○ For each filesystem, get chain from map

■ Replay all records in chain

Shared log pool

Client pool

Dataset

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

Client Import Cleanup

● Deleting ZIL
● Crash before shared log pool syncs
● Leaked space?

Shared log pool

Client pool

?

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

Client Import Cleanup

● Deleting ZIL
● Crash before shared log pool syncs
● Leaked space?
● Backup solution:
● On client import

○ Iterate over chain map

■ Any entries that don’t have a real

filesystem, clean up

Shared log pool

Client pool

?

ZIL Block

ZIL Block

Chain
map

ZIL BlockZIL Block

Deregistration

● Removing a client pool
● Need to clean up chain map entries

Client

Client

Client

Client

Client
FS

FS

FS

FS

FS

FS

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

Deregistration

● Removing a client pool
● Need to clean up chain map entries

○ For each filesystem in client

■ Free each block in chain

● Remove dependency

Client

Client

Client

Client

Client
FS

FS

FS

FS

FS

FS

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

ZIL
Block

Missed Deregistration?

● Accidents happen
● Pools are moved/destroyed
● GC as backup

$ zpool list -o name,guid client
NAME GUID
client 7505453946292746732
$ zpool export client
$ zpool recycle -n shared_log
Cleaned up (dry run): [7505453946292746732]

Shared Log Deletion

● Forbidden if any clients currently using
● Deletes all chains, frees all blocks
● All clients need to discard logs

$ zpool list -o name
NAME
client1
client2
shared_log
$ zpool destroy client1
$ zpool destroy client2
$ zpool destroy shared_log

$ zpool list -o name
NAME
client1
client2
shared_log
$ zpool export client1
$ zpool destroy client2
$ zpool destroy shared_log
$ zpool import -m client1

Performance results

● For non-shared-log pools, no difference
● < 2% normally
● ~7% for workloads with many filesystems

○ Further improvements are possible

Caveats

● No reguiding
● No checkpoints

○ Meaningless for shared log

○ Doable for client, but not in MVP

Current Status

● PR 14520
● Reviews & comments welcome!
● Find me after the talk!

https://github.com/openzfs/zfs/pull/14520

Questions?

Thank you!

Bonus Slides

High-Level Workflow

● Creation
● Registration
● ZIL creation
● ZIL use
● Unregistration
● Deletion

The Chain Map

● Map from objset to ZIL chain
○ In-memory representation

○ On-disk format

Client

Client Client

Client ClientClient Client

FS

FS FS

FS FSFS FS

ZIL
Block

Details: Creation

● Pass -L to zpool create
● Marked with key in pool config
● No new filesystems
● No receives
● No mounting
● Chain map created

○ Details later!

Details: Registration

● Pass -l to zpool create/import
● Key added to config marking dependance
● Metaslab log class becomes “virtual”

○ No mixing with regular SLOG

● ZILs point to blocks in shared log pool

Details: ZIL Creation

● ZIL creation proceeds mostly as normal
● New chain map entry
● Allocation in shared log pool

Details: ZIL Use

● ZIL updates proceed as normal
○ Allocations from shared log pool

● Every client TXG, chain map is updated
○ spa_zil_map
○ spa_zil_deletes

● Claim
● Replay
● Client import cleanup

Details: Unregistration

● Iterate over chain map entries
○ Free blocks in chain

○ Delete entry

● Remove from list of registered clients
● Remove marker in client
● GC as backup

