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Introduction

● Paul Dagnelie (he/him)
● Delphix
● 10th Dev Summit!
● Past Talks

○ Redacted Send/Receive

○ Metaslab Performance



Background: The ZIL

● Transaction Groups (TXGs)
○ Efficient, but infrequent

● Synchronous writes
○ Low latency

○ High frequency in some workloads

● Anti-synergy



Background: The ZIL

● Transaction Groups (TXGs)
○ Efficient, but infrequent

● Synchronous writes
○ Low latency

○ High frequency in some workloads

● Solution: ZFS Intent Log (ZIL)
○ Per-dataset

○ Chain of blocks

○ Not long-term storage

○ Only read on recovery
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Background: ZIL Alloc/Write

● Sync write comes in
● Allocate block
● Can’t wait for allocation to sync
● Solution: Chain blocks together
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Background: ZIL Alloc/Write

● Sync write comes in
● Allocate block
● Can’t wait for allocation to sync
● Solution: Chain blocks together

● When TXG syncs, advance head
○ Data is in order, no losses

Dataset
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Background: ZIL Claim/Replay

● System crash/power event
● Need to find all ZIL blocks before we start allocating
● ZIL Claim:

○ For each dataset:

■ Iterate over ZIL chain:

● Mark each block as allocated

● ZIL Replay:
○ On mount, iterate over ZIL  chain:

■ Apply each record in each block



Background: SLOGs

● Where do ZIL writes go?
● Embedded SLOG

○ Easy Administration

○ Complex performance

● SLOG devices
○ Harder administration

○ Better Performance

○ Expensive
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SAN

Context: Multiple Pools

● Moving data
○ FibreChannel/SAN

○ Shift pools from server to server

○ Load balancing
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Context: Multiple Pools

● Fault isolation
○ Caching data

○ Don’t want to lose other data if one disk dies

○ Some software already handles this
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Context: Multiple Pools

● Moving data
○ FibreChannel/SAN

○ Poor networking

● Fault isolation
● Varying redundancy/performance 

requirements
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The Problem

● Per-pool SLOG devices
● Capacity planning?
● Load balancing?
● Adding or removing pools?
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The Problem

● Per-pool SLOG devices
● Capacity planning?
● Load balancing?
● Adding or removing pools?

● Insight: This is what zpools were built 
to solve!
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The Solution

● Pool SLOG devices
● Multiple clients, one provider
● Performance near-parity
● Simple administration
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Shared Log Pool

● Normal zpool except:
○ No filesystems

○ Config flag

○ New data structure: the Chain Map

■ Details later!

$ zpool create -L shared_log sdb sdc sdd
$ zpool list -v -o name,size
NAME       SIZE
shared_log   240G
  sdb     80G
  sdc     80G
  sdd     80G
rpool     69.5G
  sda1    70.0G



Client Pool

● Normal zpool except:
○ No physical SLOG

○ Depends on shared log pool

○ ZIL blocks stored in shared log pool

● Create or import

$ zpool create -l shared_log client sde sdf sdg
$ zpool list -v -o name,size client
NAME           SIZE
client           6T
  sdb            2T
  sdc            2T
  sdd            2T
  shared log     -
    shared_log   240G



Client Pool

● Normal zpool except:
○ No physical SLOG

○ Depends on shared log pool

○ ZIL blocks stored in shared log pool

● Create or import

$ zpool import -m -l shared_log client
$ zpool list -v -o name,size client
NAME           SIZE
client           6T
  sdb            2T
  sdc            2T
  sdd            2T
  shared log     -
    shared_log   240G



Shared log pool

Client pool

But Wait!

● ZIL header points to shared log pool
● Cross pool blkptrs?
● ZIL Claim
● Need a better way Dataset
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The Chain Map

● Map from objset to ZIL chain
○ In-memory representation

○ On-disk format
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ZIL Use: New ZIL

● New filesystem created in client
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ZIL Use: New ZIL

● New filesystem created in client
● Create chain map entry
● Allocate first block

Shared log pool

Client pool
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Chain 
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ZIL Use: New ZIL Block

● Sync write comes in
● Allocate in shared log pool
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ZIL Use: New ZIL Block

● Sync write comes in
● Allocate in shared log pool
● Append to chain

○ No new logic

Shared log pool

Client pool

Dataset

ZIL Block

ZIL BlockZIL Block

Chain 
map

ZIL Block



ZIL Use: TXG sync

● Client pool syncing TXG
● Need to move chain head forwards
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ZIL Use: TXG sync

● Client pool syncing TXG
● Need to move chain head forwards
● After TXG syncs, update chain map

○ spa_zil_map

● Free old ZIL Blocks
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ZIL Use: Removing ZIL

● Deleting filesystem
● Need to clean up chain
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ZIL Use: Removing ZIL

● Deleting filesystem
● Need to clean up chain
● After deletion syncs in client, update 

chain map
○ spa_zil_deletes

● Free all blocks in chain
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ZIL Claim

● Crash/power outage
● On shared log pool import

○ Iterate over each client in chain map

■ Iterate over each filesystem

● Mark each ZIL block as allocated
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ZIL Replay

● Once client pool imports
○ For each filesystem, get chain from map

■ Replay all records in chain
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Client Import Cleanup

● Deleting ZIL
● Crash before shared log pool syncs
● Leaked space?
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Client Import Cleanup

● Deleting ZIL
● Crash before shared log pool syncs
● Leaked space?
● Backup solution:
● On client import

○ Iterate over chain map

■ Any entries that don’t have a real 

filesystem, clean up
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Deregistration

● Removing a client pool
● Need to clean up chain map entries
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Deregistration

● Removing a client pool
● Need to clean up chain map entries

○ For each filesystem in client

■ Free each block in chain

● Remove dependency
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Missed Deregistration?

● Accidents happen
● Pools are moved/destroyed
● GC as backup

$ zpool list -o name,guid client
NAME                   GUID
client  7505453946292746732
$ zpool export client
$ zpool recycle -n shared_log
Cleaned up (dry run): [7505453946292746732]



Shared Log Deletion

● Forbidden if any clients currently using
● Deletes all chains, frees all blocks
● All clients need to discard logs

$ zpool list -o name
NAME
client1
client2
shared_log
$ zpool destroy client1
$ zpool destroy client2
$ zpool destroy shared_log

$ zpool list -o name
NAME
client1
client2
shared_log
$ zpool export client1
$ zpool destroy client2
$ zpool destroy shared_log
$ zpool import -m client1



Performance results

● For non-shared-log pools, no difference
● < 2% normally
● ~7% for workloads with many filesystems

○ Further improvements are possible



Caveats

● No reguiding
● No checkpoints

○ Meaningless for shared log

○ Doable for client, but not in MVP



Current Status

● PR 14520
● Reviews & comments welcome!
● Find me after the talk!

https://github.com/openzfs/zfs/pull/14520


Questions?



Thank you!



Bonus Slides



High-Level Workflow

● Creation
● Registration
● ZIL creation
● ZIL use
● Unregistration
● Deletion



The Chain Map

● Map from objset to ZIL chain
○ In-memory representation

○ On-disk format
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Details: Creation

● Pass -L to zpool create
● Marked with key in pool config
● No new filesystems
● No receives
● No mounting
● Chain map created

○ Details later!



Details: Registration

● Pass -l to zpool create/import
● Key added to config marking dependance
● Metaslab log class becomes “virtual”

○ No mixing with regular SLOG

● ZILs point to blocks in shared log pool



Details: ZIL Creation

● ZIL creation proceeds mostly as normal
● New chain map entry
● Allocation in shared log pool



Details: ZIL Use

● ZIL updates proceed as normal
○ Allocations from shared log pool

● Every client TXG, chain map is updated
○ spa_zil_map
○ spa_zil_deletes

● Claim
● Replay
● Client import cleanup



Details: Unregistration

● Iterate over chain map entries
○ Free blocks in chain

○ Delete entry

● Remove from list of registered clients
● Remove marker in client
● GC as backup


